Hino-avto.ru

официальный дилер Hino Motors
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Переделка atx в лабораторный бп подробно

Лабораторный БП из компьютерного ATX

В наше время наверное только ленивый, не переделывал компьютерный AT или ATX блок питания в лабораторный или зарядное устройство для автомобильной АКБ. И я решил не оставаться в стороне. Для переделки взял старый ATX 350 Вт блок питания с ШИМ контроллером TL494 или его аналогом KA7500B, блоки с таким контроллером легче всего переделывать. Первым делом необходимо убрать лишние компоненты с платы, дроссель групповой стабилизации, конденсаторы, некоторые резисторы, не нужные перемычки, цепь power ON с ней же и компаратор LM393. Стоит заметить что все схемы на TL494 похожи, иметь могут только не большие различия, поэтому для понимания как переделывать БП можно взять типовую схему.

Вообщем вот типовая схема ATX блока питания на TL494.

Вот схема с удаленными лишними элементами.

На первой схеме я выделил участок, этот участок отвечает за защиту от перегрузок по мощности у себя я его счел нужным удалить о чем немного сожалею. Советую этот участок не удалять. В выходной цепи вместо диодной сборки +12 В необходимо поставить диодную сборку Шоттки с максимальным импульсным обратным напряжением 100 В и током 15 А примерно такую: VS-16CTQ100PBF. Электролитический конденсатор после дросселя должен иметь емкость 1000-2200 мкФ и напряжение минимум 25 В. Нагрузочный резистор должен иметь сопротивление 100 Ом и мощность около 2 Вт. Дроссель

После того как все лишние удалено, можно приступить к сборке схемы управления.

Схему управления взял из этой статьи: Лабораторный БП из AT. В этой статье очень подробно описывается переделка.

На операционном усилителе DA1.1 собран дифференциальный усилитель в цепи измерения напряжения. Коэффициент усиления подобран таким образом, что при изменении выходного напряжения блока питания от 0 до 20 В (с учётом падения напряжения на шунте R7), на его выходе сигнал меняется в пределах 0…5 В. Коэффициент усиления зависит от соотношения сопротивлений резисторов R2/R1=R4/R3.

На операционном усилителе DA1.2 собран усилитель в цепи измерения тока. Он усиливает величину падения напряжения на шунте R7. Коэффициент усиления подобран таким образом, что при изменении тока нагрузки блока питания от 0 до 10 А, на его выходе сигнал меняется в пределах 0…5 В. Коэффициент усиления зависит от соотношения сопротивлений резисторов R6/R5.

Сигналы с обоих усилителей (напряжения и тока) подаются на входы компараторов ошибки ШИМ-контроллера (выводы 1 и 16 DA2). Для установки необходимых значений напряжения и тока, инвертирующие входы этих компараторов (выводы 2 и 15 DA2) подключены к регулируемым делителям опорного напряжения (переменные резисторы R8, R10). Напряжение +5 В для этих делителей снимается с внутреннего источника опорного напряжения ШИМ-контроллера (вывод 14 DA2).

Резисторы R9, R11 ограничивают нижний порог регулировки. Конденсаторы C2, C3 устраняют возможный «шум» при повороте движка переменного резистора. Резисторы R14, R15 также установлены на случай «обрыва» движка переменного резистора.

На операционном усилителе DA1.4 собран компаратор для индикации перехода блока питания в режим стабилизации тока (LED1).

Моя схема

В своей схеме для измерения тока я использую датчик тока ACS712 на эффекте холла, валялся длительное время без дела вот и решил внедрить. Надо отметить, что измеряет он по точнее чем кусок проволоки, ибо имеет маленькую зависимость от температуры так как измерительная часть имеет очень маленькое сопротивление. Кусок же проволоки меняет свое сопротивление с ростом тока.

Сборка

Шунт сделал из текстолита и куска проволоки из черного метала, сопротивление получилось примерно 0,001 Ом, чего вполне достаточно. Крепится к корпусу на стойки для печатных плат.

Разместил все в готовом корпусе:

Готовый корпус заводского изготовления (G768 140x190x80мм).

Чертеж передней панели:

Плата от компьютерного блока питания, легко устанавливается в этот корпус.

Сзади установлен вентилятор охлаждения, он продувает воздух через весь корпус, в верхней крышке насверлил отверстий по бокам для выхода воздуха. Обороты заданы DC-DC преобразователем, питание взято с дежурки 20V.

Плата индикации:

Плата создана в программе Dip Trace Скачать

Плата управления:

Плата создана в программе Dip Trace Скачать

Код программы для Atmega8

Код создан в среде CodeVisionAVR. Особо ничего не придумывал, использовал математику с float. Архив с проектом, в нем же можно найти прошивку Скачать

Переделка БП АТХ под лабораторный

Автор: davids58. Опубликовано в Источники питания

Но сразу хочу сказать, что называть переделанный БП АТХ лабораторным – это слишком громко и на это есть как минимум три причины:
1. Уровень пульсаций снизить, до необходимого в лабораторном блоке, будет весьма затруднительно.
2. На выходе БП стоят емкости по 2000…3000 мкФ, поэтому вся энергия заряженного конденсатора приложится к элементу, который вышел, скажем в лавинный пробой, — это неизбежно приведет к его выходу из строя, хотя вы предварительно и выставили ограничение тока на уровне нескольких мА. Об этом необходимо всегда помнить.
3. Минус(выход) блока питания, практически всех переделок, отделен от корпуса(«земли») шунтом, который является датчиком тока нагрузки. А защита таких БП в основном сводится к ограничению тока выдаваемого БП, вроде бы все нормально, но есть одно НО… Если случайно плюсовой провод с выхода БП попадает на металлический корпус, то защита по мощности может(а это случается в большинстве случаев) не успеть среагировать на превышение предельного значения и тогда — знакомый всем БАБАХ. И два силовых ключа пошли спать…
НО если все это для вас не преграда, тогда вы к нам!

Переделывать БП можно по-разному(Google даст тысячи вариантов):
— самый простой вариант выкинуть все лишнее с низковольтной половины платы и добавить шунт и два потенциометра;
— путь посложнее – добавить к первому варианту два операционных усилителя;
— и третий, по которому пошел я, — это создание совершенно отдельной платы управления, очистив все на низковольтной стороне кроме: силовых диодов, дросселя и конденсаторов фильтра. Почему так, а потому, что не все БП АТХ можно переделать первыми двумя способами. Некоторые ШИМ контроллеры имеют встроенную систему слежения за питающими напряжениями и обмануть их не всегда удается, некоторые имеют всего один усилитель ошибки, а нужно два: для тока и напряжения. Поэтому было решено взять за основу TL494(как самую ходовую) и добавить схему защиты от превышения мощности в нагрузке и перенапряжения с защелкой, т.е. при срабатывании защиты — возврат только после обесточивания схемы управления. Единственное, что перед тем как идти по этому пути необходимо восстановить(если был убитый) БП до рабочего состояния и померить частоту ШИМ, чтобы потом выставить такую же на новой плате. Большинство деталей с платы БП из обвязки ШИМ контроллера пойдут на новую плату. Очень подробно описал процесс переделки и настройки БП АТХ Андрей Голубев в своем блоге. В итоге получилось вот это:

Читать еще:  Не все так плохо: плюсы и минусы LADA Largus

Таких блоков было собрано больше десятка и они успешно работают, но время не стоит на месте и прогресс идет вперед. Информативность китайского показометра слишком мала (ток и напряжение), а хочется знать потребляемую мощность, сопротивление нагрузки, количество Ампер-часов. Тут, конечно может помочь только микроконтроллер (МК).
Автором прошивки к данному устройству является Soir.
В основу данного устройства легла схема (http://sxem.org/2-vse-stati/20-voltmetry/91-voltmetr-ampermetr-vattmetr-v3-0-nokia5110) которая немного видоизменилась и приобрела следующий вид:

Прибор собран на двух платах – цифровой и аналоговой, которые собираются «бутербродом». Цифровая плата универсальная, ее можно использовать практически в любых проектах с Атмегой 8, поскольку предусмотрена установка максимальной конфигурации элементов для данной микросхемы. Ненужные элементы просто не впаиваются, а там, где необходимо ставятся перемычки вместо резисторов.

На дисплее прибора отображается:
— Напряжение на нагрузке (два диапазона 0,01…9,99В и 10,0…99,9В)
— Ток в нагрузке (0,01…9,99А)
— Мощность в нагрузке(0,1…999,9Вт)
— Сопротивление нагрузки(0,001…99,999Ом)
— Текущее время (ЧЧ:ММ)
— Температуру радиатора или др. объекта (-50…+125оС)
— Количество А-ч в нагрузке(0,01…99,99Ач)
— Максимально допустимая мощность в нагрузке(1…999Вт) после которой срабатывает отсечка
— Максимально допустимая температура объекта (+0,1…+125оС) после которой срабатывает отсечка
— минимальное напряжение на нагрузке(0,01…Umax БП) после которой срабатывает отсечка.
Кроме того прибор выдает:
— постоянные напряжения (0…5В) по двум каналам(для тока и напряжения) для установки уровня срабатывания компараторов усилителей ошибки TL494с целью регулировки выходного напряжения и ограничения максимального тока выдаваемого блоком питания, которые контролируются по показаниям амперметра и вольтметра.
— уровень логической единицы при срабатывании отсечки(для остановки ШИМ )
— светодиодную индикацию трех вариантов отсечки(мощность, температура, снижение напряжения ниже порога – при разрядке АКБ).
— напряжение с выхода усилителя тока шунта (0…5В) для компаратора усилителя ошибки канала тока TL494.
Управление всеми функциями осуществляется с помощью энкодера.
На основном экране все, перечисленные выше параметры.

Меню:
— первое короткое нажатие на энкодер – мигает значение «V» — энкодером регулируем выходное напряжение.
— второе короткое нажатие на энкодер – мигает значение «А» — энкодером регулируем максимальный выходной ток БП при нагруженном выходе.
Если 10с ничего не делать – выход в основной экран
Длинное нажатие (более 3с) вход в меню:
-заряд
-мощность
— температура
— Напряжение
— время
— назад
Навигация по меню поворотом энкодера, выбор пункта — нажатием его кнопки.
В каждом пункте меню есть свои пункты подменю, которые интуитивно понятны. С их помощью можно установить значение параметра или отключить любую отсечку.
Если 10с ничего не делать – выход в основной экран, и запись в память МК.
Для модернизации платы управления БП с нее удаляются потенциометры, а на их место устанавливается 10 контактный разъем для подключения нашего измерительного прибора. Обвязку с операционника тока убираем, ставим в режим повторителя, допаиваем два резистора * на случай обрыва шлейфа. Шунт измерительного прибора подключается в разрыв минусового провода БП. Питание на прибор идет от БП ДР АТХ, переделанного на 12В, оно приходит через плату управления, которая тоже питается от этого БП.
Плату управления я не переделывал ее вариант в архиве. Если кто будет разводить, то лучше сразу на СМД элементы. Подключение Блока к плате управления на следующей схеме.

Данный прибор может быть с успехом использован в электронной нагрузке, о которой речь идет речь в статье Электронная нагрузка с микропроцессорным управлением.

В архиве находятся прошивка, проект в Proteus для симуляции работы, FUSE, чертежи печатных плат в формате *.lay6 и схемы в формате *.spl7.

Для обсуждения, вопросов и предложений на форуме есть соответствующая тема.

Регулируемый блок питания 2,5-24в из БП компьютера

Как самому изготовить полноценный блок питания с диапазоном регулируемого напряжения 2,5-24 вольта, да очень просто, повторить может каждый не имея за плечами радиолюбительского опыта.

Делать будем из старого компьютерного блока питания, ТХ или АТХ без разницы, благо, за годы PC Эры у каждого дома уже накопилось достаточно количество старого компьютерного железа и БП наверняка тоже там есть, поэтому себестоимость самоделки будет незначительной, а для некоторых мастеров равно нулю рублей.

Мне достался для переделки вот какой АТ блок.

Чем мощнее будете использовать БП тем лучше результат, мой донор всего 250W с 10 амперами на шине +12v, а на деле при нагрузке всего 4 А он уже не справляется, происходит полная просадка выходного напряжения.

Смотрите что написано на корпусе.

Поэтому смотрите сами, какой ток вы планируете получать с вашего регулируемого БП, такой потенциал донора и закладывайте сразу.

Вариантов доработки стандартного компьютерного БП множество, но все они основаны на изменении в обвязке микросхемы IC — TL494CN (её аналоги DBL494, КА7500, IR3М02, А494, МВ3759, М1114ЕУ, МPC494C и т.д.).

Рис №0 Распиновка микросхемы TL494CN и аналогов.

Посмотрим несколько вариантов исполнения схем компьютерных БП, возможно одна из них окажется ваша и разбираться с обвязкой станет намного проще.





Приступим к работе.
Для начала необходимо разобрать корпус БП, выкручиваем четыре болта, снимаем крышку и смотрим внутрь.

Ищем на плате микросхему из списка выше, если таковой не окажется, тогда можно поискать вариант доработки в интернете под вашу IС.

В моем случае на плате была обнаружена микросхема KA7500, значит можно приступать к изучению обвязки и расположению ненужных нам деталей, которые необходимо удалить.

На фото разъём питания 220v.

Читать еще:  Как снять торпеду на ваз 2107 инжектор

Отсоединим питание и вентилятор, выпаиваем или выкусываем выходные провода, чтобы не мешали нам разбираться в схеме, оставим только необходимые, один желтый (+12v), черный (общий) и зеленый* (пуск ON) если есть такой.

На фото — черные конденсаторы как вариант замены для синего.

Делается это потому, что наш доработанный блок будет выдавать не +12 вольт, а до +24 вольт, и без замены конденсаторы просто взорвутся при первом испытании на 24v, через несколько минут работы. При подборе нового электролита емкость уменьшать не желательно, увеличивать всегда рекомендуется.

Самая ответственная часть работы.
Будем удалять все лишнее в обвязке IC494, и припаивать другие номиналы деталей, чтобы в результате получилась вот такая обвязка (Рис. №1).

Рис. №1 Изменение в обвязке микросхемы IC 494 (схема доработки).

Нам будут нужны только эти ножки микросхемы №1, 2, 3, 4, 15 и 16, на остальные внимание не обращать.

Рис. №2 Вариант доработки на примере схемы №1


На фото — приподнятием ножек ненужных деталей, разрываем цепи.

Некоторые резисторы, которые уже впаяны в схему обвязки могут подойти без их замены, например, нам необходимо поставить резистор на R=2.7k с подключением к «общему», но там уже стоит R=3k подключенный к «общему», это нас вполне устраивает и мы его оставляем там без изменений (пример на Рис. №2, зеленые резисторы не меняются).



На фото— перерезанные дорожки и добавленные новые перемычки, старые номиналы записываем маркером, может понадобится восстановить все обратно.

Таким образом просматриваем и переделываем все цепи на шести ножках микросхемы.

Это был самой сложный пункт в переделке.

Делаем регуляторы напряжения и тока.

Берем переменные резисторы на 22к (регулятор напряжения) и 330Ом (регулятор тока), припаиваем к ним по два 15см провода, другие концы впаиваем на плату согласно схеме (Рис. №1). Устанавливаем на лицевую панель.

Контроль напряжения и тока.
Для контроля нам понадобятся вольтметр (0-30v) и амперметр (0-6А).

Амперметр я использовал свой, из старых запасов СССР.

ВАЖНО — внутри прибора есть резистор Тока (датчик Тока), необходимый нам по схеме (Рис. №1), поэтому, если будете использовать амперметр, то резистор Тока ставить дополнительно не надо, без амперметра ставить надо. Обычно RТока делается самодельный, на 2-х ватное сопротивление МЛТ наматывается провод D=0,5-0,6 мм, виток к витку на всю длину, концы припаяем к выводам сопротивления, вот и все.

Корпус прибора каждый сделает под себя.
Можно оставить полностью металлический, прорезав отверстия под регуляторы и приборы контроля. Я использовал обрезки ламината, их легче сверлить и выпиливать.



ЗАРЯДНОЕ УСТРОЙСТВО — ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ ИЗ ATX

Превращаем ненужный БП от компьютера в мощное зарядное устройство — лабораторный блок питания. Пошаговая фотоинструкция. Вначале ищем компьютерный блок питания формата ATX.

Выпаиваем всю выпрямительную часть и всё, что соединено с ножками 1, 2 и 3 микросхемы TL494. Также нужно выпаять диод, (отмечено 1 на плате) соединяющий выходную обмотку силового трансформатора с + питания TL494 – она будет питаться только от маленького «дежурного» преобразователя (у него есть не только 5V выход, но и 12V), чтобы не зависеть от выходного напряжения БП. И обратите внимание на электролит отмененным 2-ой, его оставить, он бывает от 1 до 4.7мкф. Я его меняю на 10мкфХ10в.

Отсоединяем от схемы ножки 15 и 16 – это второй усилитель ошибки, который мы используем для канала стабилизации тока.

Пунктиром очерчены детали, которые уже есть в БП.

Выпрямительные диоды нужно соединить с 12-ти вольтовыми отводами вторичной обмотки силового трансформатора. Лучше поставить более мощные, например сборку 30CPQ150 – тогда можно максимальный выходной ток увеличить до 20А.

Дроссель L1 делаем из кольца, оставив на нём только 5-тивольтовую обмотку, дроссель L2 из цепи 5V.

Приводим схему выходной части в соответствие со схемой. Вентилятор запитываем от питания TL494 (12 нога) – так, чтобы он дул внутрь корпуса. На микросхеме ОУ LM358 (LM2904, или любой другой сдвоенный низковольтный операционник, который может работать в однополярном включении и при входных напряжениях от 0 В) собран измерительный усилитель выходного напряжения и тока, который будет давать измерительные сигналы на TL494. Резисторы R9 и R8 задают опорные напряжения.

Переменный резистор R9 регулирует выходное напряжение, R8 – выходной ток. Так как мне не нужно напряжение, а только ток для зарядки, то напряжение сделал на полную (получилось 24в), а оставил только регулятор тока. Токоизмерительный резистор R7 на 0.05 ом должен быть мощностью 5 ватт (10А^2*0.05ом). Питание для ОУ берём с выхода «дежурных» 5В БП ATX (обычно обозначены на плате как +5V SB или 5V STANDBY, фиолетовый провод). Нагрузка подключается к +OUT и -OUT.

Измерительный резистор R7 – это два 5-тиваттных резистора (белые) по 0.1ом соединённые параллельно.

Нагрузочный резистор 470ом 1 Вт ставим параллельно C5. Он нужен чтобы БП ATX без нагрузки не оставался. Ток через него не учитывается, он до измерительного резистора R7 включён. Без него, тоже работать будет, но тогда если установить более низкое напряжение при отключенной от выхода нагрузке – долго ждать, пока C4 и C5 разрядятся до нужного напряжения.

Упаковываем все в корпус, выводим необходимые элементы, и радуемся отличному лабораторному блоку питания, он же по совместительству импульсное зарядное устройство для автомобильных аккумуляторов. Автор статьи и фото: ear

Зарядное из блока питания – переделка для новичков

Дата: 30.03.2017 // 0 Комментариев

При изготовлении зарядного устройства из компьютерного блока питания, многие сталкиваются с проблемой подбора блока. Производителей, как и схем блоков, существует огромное количество, практически все они при правильном подходе поддаются переделке. Но, сделать зарядное из блока питания можно за полчаса, а можно потратить на это целый вечер, все зависит от самого блока. Сегодня в нашей статье мы расскажем, как нужно выбирать блок питания для переделки в зарядное. Также, на примере блока CWT-250W, будут показаны основные нюансы подобных переделок, если не удалось найти даже схему самого блока.

Как выбрать блок питания ATX для переделки в зарядное?

Важным моментом при выборе БП является микросхема ШИМ.

  • Блоки, собранные на ШИМ TL494или аналогах KA7500, DBL494 и др., легко поддаются всевозможным переделкам, в процессе практически никогда не возникает проблем. Наличие на плате дополнительной микросхемы LM393 или LM339 зачастую не влияет на процесс переделки в зарядное устройство.
  • Блоки, в основе которых лежат микросхемы SG6105, AT2005, 2003и другие ШИМ с супервизором также подходят для переделок. Но, увы, сам процесс намного сложнее и требует дополнительных навыков и сил.
  • Чем-то средним между этими крайностями являются блоки, у которых стоит ШИМ UC3843и супервизор R7510. Процесс отключения супервизора происходит быстро, а корректировка выходного напряжения не займет много времени.
Читать еще:  Что делать, если не работает кнопка сигнала на руле ВАЗ

Как видим, самым простым будет переделка компьютерного блока в зарядное на основе ШИМ TL494. Ищем именно такой блок, если не охота морочить голову с обманом супервизора.

Зарядное из блока питания – переделка для новичков

Следующие материалы подготовил для нас Андрей Разумовский из далекой Сибири, г. Сургут, Ханты-Мансийского автономного округа, которому мы дали лишь небольшие подсказки при переделке.

— Паяю давно, так что обращаюсь с паяльником хорошо и микропайка не проблема, а вот с переделками сталкиваюсь первый раз. Решил попросить помощи, так как всё казалось страшным и сложным, так что очень благодарен за помощь в переделке.

Для переделки в зарядное устройство выбран блок CWT-250W.

Точную схему блока найти не удалось, обойдемся без нее. Интересная особенность этого блока – дежурка выполнена на небольшой отдельной плате.

И так, первым делом разбираем блок и выпаиваем все лишние провода. Зеленый провод обрезаем и подключаем к минусу БП, для автоматического старта блока.

ШИМ блока KA7500B, на плате также присутствует KIA393.

Находим первую ножку KA7500 (на фото отмечена красным), а также резистор, с помощью которого эта ножка соединяется с шиной +12 В.

Для наглядности, если нет точной схемы блока, этот участок лучше зарисовать самостоятельно. В 99% случаях участок схемы будет выглядеть вот так. Необходимый резистор обозначен как R29.

Выпаиваем его из платы и измеряем сопротивление, оно составило 38,2 кОм.

Далее заменяем этот резистор подстроечным на 100 кОм, настроенным на точно такое же сопротивление.

Увеличивая сопротивление подстроечного резистора, добиваемся необходимого напряжения на блоке, которое должно составлять 14-14,4 В. Если диапазона регулировки не хватает – последовательно с подстроечным резистором можно включить постоянный на 100 кОм.

Когда настройка выходного напряжения закончена, можно измерить текущее сопротивление (составило 149 кОм) и заменить постоянным резистором.

Последним шагом станет установка крокодилов на выход БП и подключение цифрового вольтамперметра. И можно считать, что зарядное из блока питания готово.

С какими трудностями можно столкнуться при переделке блока?

Иногда при достижении 13 — 13,2 В БП отключается, это верный признак того, что сработала защита от перенапряжения. Для ее отключения необходимо найти и отключить стабилитроны связанные с шиной +12 и +5 В. Более подробно читаем тут.

Важно помнить, что некоторые манипуляции с блоком происходят тогда, когда он включен в сеть и на некоторых компонентах присутствует опасное для жизни напряжение. Необходимо быть крайне внимательным и осторожным при переделке.

Переделка ATX в лабораторный БП

Собирая схемы, всегда хотелось иметь под рукой надежный БП под все случаи жизни. Перепаяв десяток схем, спалив жменю транзисторов, выкладываю свою схему популярнейшей переделки из ATXых блоков питания в лабораторный регулируемый источник.

1) Сначала, что нужно оставить с типовой схемы стандартного БП:

Т.е. оставляем высоковольтную часть и дежурку. Почти всю низковольтную часть выкидываем. Оставляем сдвоенный диод на выходных +12V, ставим свой дроссель, электролит. Если получиться сделать два каскада фильтров — замечательно. Дальше, чтобы расширить диапазон напряжения не перематывая основной трансформатор c +5V обмотки делаем -5V, т,е. впаиваем сдвоенный диод анодами вместе. Также добавляем каскады фильтров (при пайке не путаем полярность относительно общего для электролитов).

2) Травим и собираем наши мозги:

Сама схема не новая, но некоторые изменения в обвязке операционника в сторону упрощения сделал.

На 4 и 13 ножках TL494 есть дополнительные пятаки для подключения тумблера «Вкл/выкл ШИМ».

3) Подключение доработки к основной плате:

J29 — подключаем к дежурному +5V;

J28 — подключаем к дежурному +12V;

J15 — подключаем к выходному +V;

J25 — подключаем к датчику тока;

J16 — подключаем к выходному -V;

J26, J27 — подключаем к первичке трансформатора управления силовыми транзисторами (центральная точка должна была остаться подключенной к дежурному питанию через диод с резистором).

Подстроечный RV5 при первом включении должен быть выкручен на 1/7 к общему (между общим и регулируемой ногой 5кОм, между J15 и регулируемой ногой 27кОм).

Подстроечный RV3 при первом включении должен быть выкручен на 1/10 к общему (между общим и регулируемой ногой 10кОм, между ISENSE и регулируемой ногой 90кОм).

На выходе операциоников должно быть напряжение 0 — 5V.

Теперь самое сложное для понимания. По новой схеме основной платы у нас получилось на выходе плюс 12V и минус 5V. Поскольку датчик тока у нас стоит в отрицательном напряжении, то операционник с ним работать не захочет. Исправляется просто, для этого нужно чтобы «общий» маленькой платы был подключен к минус 5V основной платы новой схемы. Также нужно «общий» дежурного напряжения основной платы перерезать от «общего» силовой части старой схемы и подключить к минус 5V по новой схеме. В некоторых БП фирмы Chieftec проще, видел уже развязанные «общие» дежурного питания и силы.

4) Прошиваем контроллеры:

Фьюзы не менял, остаются заводские. Для контроллера дисплея тока, при прошивке пищик отпаивать обязательно, с ним не шьется.

5) Собираем в кучу:

Каждый делает по разному. Могу лишь показать пример моего одного из четырех последних:

Не забываем ставить резисторы параллельно выходным электролитам для их разрядки.

Пьезоизлучатель пикает примерно раз в две минуты при нагрузке 1А — 1 раз, 2А — 2 раза и т.д., свыше 9,99А пищит постоянно.

Итого, получился БП регулируемый по напряжению 0 — 32.3V, по току 0 — 9.99А.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector